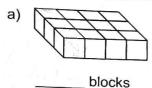
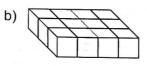
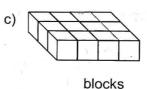
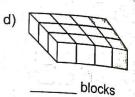

	NOTE:	a three-dimensional (3-D) object occupi	es. 1 cm³ block
	A 3-D object can be measured in three directions, such as length, width and height.	To measure volum cubic centimetres		height = 1 cm
	four cubes _	made of centimetre cub or 4 cubic centimetres	(writton as 1 cm3)	of G
,	TEACHER: Use centicubes or other	materials to construct th	e models on this pag	je.
	Using "centicubes" as your	unit of measurement,	write the volume o	of each object:
	Volume = cubes	b)	cubes	Volume =cubes
	d) Volume = cubes	e)	cubes	f)
	Given a structure made of control you can draw a top view as	cubes,	_ 3 1	Volume = cubes
			1	The numbers tell you how many cubes are stacked in each position.
	For each figure below, fill in	the missing numbers	in the top view:	· 🗀 .
	a)		b)	
	c)		d)	
	e)		f)	
	jump math			Measurement

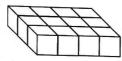
	A structure made of cubes such that roll has this top view. 3 2 1 What is the volume of the structure? 2 4 5
4.	This picture shows the top view of a <u>cube</u> . Fill in the missing numbers: What is the volume of the cube? REMEMBER: A cube is as high as it is wide and long.
	swer the following questions in your notebook.
An	On grid paper, draw a top view for each of the following structures (use cubes to help):
5.	a)
	e)
6.	Using centicubes, build two different shapes that have the volume of exactly 10 cubic centimetres. Draw a top view of each of your shapes.
7.	How many different rectangular prisms can you build with 8 cubes? Draw a top view for each of your shapes.
8.	Given a structure made with cubes, you can draw a front, top and side view as shown:
	front view: top view: side view:
	Draw a front, top and side view for the following structures: HINT: Use cubes to help you.
	a) b) a d) a
	jump moth Measurement 2


.. Use the number of blocks in the shaded column to write an addition statement and a multiplication statement for each area:

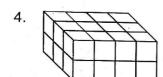





How many 1 cm³ blocks are in each shaded row?
 NOTE: Blocks are not shown to scale.

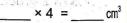


blocks

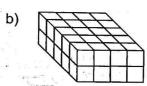


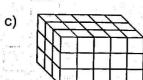
3. a) Write an addition statement for the volume of the shape:

b) Based on your answer in part a), write a multiplication statement for the same volume:


$$_{-}$$
 × $_{-}$ = $_{-}$ cm³

a) How many blocks are shaded? _____


b) Write an addition statement for the volume:


c) Write a multiplication statement for the same volume:

5. Write an addition or multiplication statement for each volume:

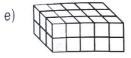
$$\times$$
 3 = \times cm³

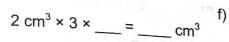
ME8-33: Volume of Rectangular Prisms (Introduction) (continued)

page 235

Write a multiplication statement for the total volume of the rectangular prism by first counting the

$$2 \text{ cm}^3 \times 3 = 6 \text{ cm}^3$$

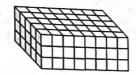

blocks in $2 \text{ cm}^3 \times 3 \times 2 = 12 \text{ cm}^3$



$$2 \text{ cm}^3 \times 3 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{ cm}^3$$

$$2 \text{ cm}^3 \times 3 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{ cm}^3$$

$$3 \text{ cm}^3 \times 3 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{ cm}^3$$


7. Find the surface area of the left-most layer:

surface area:

surface area:

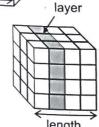
surface area"

= ___ cm × ___ cm = ___ cm² = ___ cm × ___ cm = ___ cm²

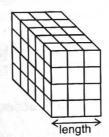
= cm \times cm = cm²

8. For each prism in Question 7, find the volume of the left-most layer of blocks:

- a) cm^3
- b) ____ cm³


9. For each prism in Question 7, compare the surface area and the volume of the left-most layer.

Are the numbers the same or different?

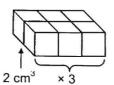

Each edge in a 1 cm³ block is 1 cm long:

number of layers = _____

length of side = _____

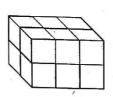
number of layers =

length of side =


11. Compare the **length** of each prism in Question 10 with the **number of layers**.

Are the numbers the same or different? ____

12. The volume of a right rectangular prism made of cm³ cubes is: (number of layers in prism) × (number of cubes in each layer). In your notebook, explain why this formula gives the same answer as (length of prism) × (surface area of left face of prism).



a)

$$2 cm^3 \times \underline{3}$$
$$= 6 cm^3$$

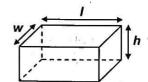
b)

 $2 \text{ cm}^3 \times 3 \times \underline{\hspace{1cm}}$

c)

 $2 \text{ cm}^3 \times 3 \times$

d)



 $2 \text{ cm}^3 \times 3 \times$

3. a) Look at each rectangular prism from Question 2. Complete the following chart:

Shape	Surface area of top	Height	Volume
Α			Volune
В			
С			
D			

- b) Say how to calculate the volume of a rectangular prism from the surface area of the top layer and the height of the prism:
- 4. A rectangular prism has length *I*, width *w* and height *h*:

- a) Write a formula for the surface area of the top (using I and w):
- b) Write a formula for the volume of the prism (using I, w and h):

Measurement

C	jun	np math	*	E	Mea	surement2
	b)	Use your rule to predict the	surface area of the	20" figure.	Figure 1 Figure	2 Figure 3
13.		Write a rule that tells you ho the figures from the figure nowidth and height 1 cm)	umber (each cube r	ias iengtn,		
	a)	What is its surface area in co What is its volume in cm ³ ?			3 3 3	
12.		picture shows the top view of			3 3 3	
11.	Find	l 3 possible lengths, widths a ld require the least amount o	nd heights in a rect f material to constru	angular prism v uct?	vith volume 24 cr	m ³ . Which one
10.		volume of a rectangular prist base of the prism?	m is 24 cm ³ and its	height is 2 cm.	What can be the	dimensions of
9.	Find whole	the length and width of all re e numbers). Which rectangle	ctangles with perimal has the least area?	eter twelve (and	d sides with leng	ths that are
8.	The a	area of the base of a right red	ctangle prism is 8 cr	m² and its volum	ne is 32 cm ³ . Wh	at is its height?
	a) 1	e one possible set of lengths, 2 cm³	b) 8 cm ³		c) 18 m ³	
		the following questions in			V20	
6.	e) f) g) h)	the surface area of the lef the surface area of the fro the surface area of the top from a) and g), the volume the volume of each right rec	ont × o = × e is: :	= volume = volume x	your answer: d) 8 cm	width 3 cm
	b) c)	the surface area of the top the surface area of the rig the surface area of the bo the surface area of the ba	ht side × ttom ×	= volume = volume		height
5.	In a	right-rectangular prism		*	h and height:	

ME8-35: Volume of Rectangular Prisms

1. Find the volumes of the rectangular prisms from the top views shown below:

a)	5	5	5
	5	5	5

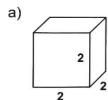
b)	3	3
	3	3

				_	
c)	2	2	2	2	2
	2	2	2	2	2

Width: _____

Width: _____ Length: Height: ____

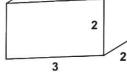
Width: _____ Length: _____ Height: _____

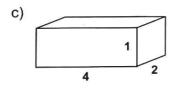

Length: _____ Height:

Volume =

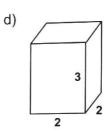
Volume = _____

Volume = ____


2. Find the volume of each box with the indicated dimensions (assume all units are in metres): HINT: V = H × L × W


Width: Length: _____ Height: _____ b)

Width: _____ Length: ____ Height: ____


Volume = _____

Volume =

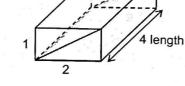
Width: _____ Length: _____ Height: _____ Volume = _____

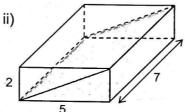
Width: _____ Length: _____ Height:

Volume =

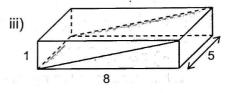
- 3. Find all the possible lengths, widths and heights for a box with the given volume so that the measurements are in whole numbers: HINT: There are 6 possibilities for part b).
 - a) Volume = 3 cm³

Width	Length
	Width


b) Volume = 4 cm^3


Height	Width	Length
,		
		100
		John Staffer
		0.42 (5.08)

- 4. In your notebook, draw the top view of a rectangular prism with the given dimensions. Then calculate the volume:
 - a) Width 3 cm; Length 4 cm; Height 5 cm
- b) Width 4 cm; Height 4 cm; Length 19 cm


- What fraction of the volume of each rectangular prism (r.p.) below is the volume of the triangular prism (t.p.)? _
 - What would you divide the volume of each rectanglular prism to find the volume of the t.p.? b)
 - Fill in the blanks:

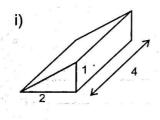
volume of r.p. = volume of t.p. =

volume of r.p. = volume of t.p. = volume of r.p. = volume of t.p. = _

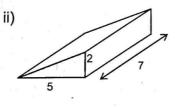
- Recall that the area of a triangle is: $\frac{1}{2}$ × base × height or (base × height) ÷ 2 3.
 - Look at the triangular prisms in Question 2 c). Calculate the area of each triangular base:

i)

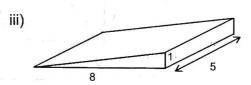
Area of triangular base


ii)

Area of triangular base



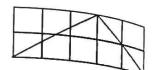
Area of triangular base


Multiply the area of each triangular base by the length of the prism:

Length Area of base

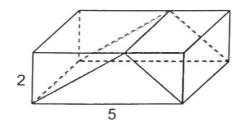
Length Area of base

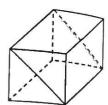
Area of base Length


Compare the numbers you calculated in Question 3 b) i), ii), iii) with the volumes of the r.t.p. you calculated in Question 2 c) i), ii), iii).

ME8-36: Volume of Triangular Prisms (continued)

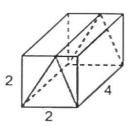
page 240


You can divide any triangle into two right triangles.

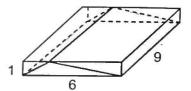

What fraction of the area of the rectangle is the triangle?

HINT: Divide the rectangle into 2 smaller rectangles that contain the right triangles. What fraction of the area of each smaller rectangle is the right triangle?

5.

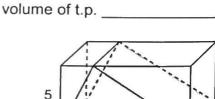


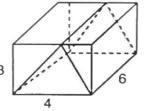
What fraction of the r.p. is the t.p.?


HINT: You can divide the r.p. into two smaller t.p.

6. Find the volume of each r.p., then the volume of t.p.:

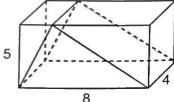
a)


b)


fraction shaded volume of r.p. _____

fraction shaded volume of r.p.

volume of t.p.


c)

volume of r.p. _____ volume of t.p. _____

fraction shaded _____

d)

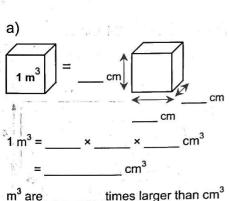

fraction shaded_____ volume of r.p.

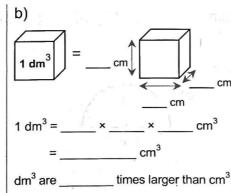
volume of t.p.

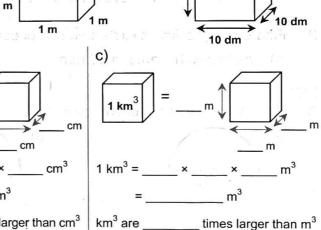
BONUS:

7. Find the surface area of the figure in Question 6 a).

- Each of the small cubes in Figure 1 has sides 1 cm and volume 1 cm³ (not drawn to scale).
 - How many 1 cm³ cubes cover the front layer of the large cube?
 - How many 1 cm³ cubes fit into the large cube?
 - What is the volume of the large cube in cm³?
 - How long are the sides of the large square in dm?
 - e) A dm³ is times larger than a cm³.




Answer the following questions in your notebook.


- 2. Follow the steps in part a) to answer each question:
 - a) Change 27 000 cm³ to dm³. The new units are 1000 times bigger. So divide by 1000. So $27\ 000\ cm^3 = 27\ dm^3$
- 3. Ken says $1 \text{ m}^3 = 10 \text{ dm} \times 10 \text{ dm} \times 10 \text{ dm}$. So $10 \times 10 \times 10 = 1000 \text{ dm}^3$ will fit into 1 m³.

Use Ken's reasoning to fill in the blanks below:

- Change 370 cm³ to dm³.
- Change 29 dm³ to cm³. c)
- d) Change .53 dm³ to cm³.
- Change 1.4 cm³ to dm³.

- Change the following units. Parts k) to p) are challenging:
 - a) $2 \text{ m}^3 \text{ to dm}^3$
- b) 40 000 dm³ to m³
- c) 52 cm³ to dm³
- d) 7 dm³ to cm³

- e) 72 365 dm³ to m³
- f) 2342 cm³ to m³
- g) 8 cm³ to dm³
- h) 3.7 dm³ to cm³

- i) 2400 cm³ to m³
- j) .000 001 m³ to cm³ k) 4 km³ to m³
- 2 736 254 m³ to km³

- m) 5.2 dm³ to mm³
- n) $3.85 \, \text{m}^3 \, \text{to mm}^3$
- o) $.02 \text{ m}^3 \text{ to mm}^3$
- p) $174 \text{ mm}^3 \text{ to m}^3$